منابع مشابه
The hydrodynamics of flagellar propulsion: helical waves
The swimming of a micro-organism by the propagation of helical waves on a long slender flagellum is analysed. The model developed by Higdon (1979) is used to study the motion of an organism with a spherical cell body (radius A ) propelled by a cylindrical flagellum (radius a, length L). The average swimming speed and power consumption are calculated for helical waves (amplitude a, wavenumber k)...
متن کاملPolar features in the flagellar propulsion of E. coli bacteria.
E. coli bacteria swim following a run and tumble pattern. In the run state all flagella join in a single helical bundle that propels the cell body along approximately straight paths. When one or more flagellar motors reverse direction the bundle unwinds and the cell randomizes its orientation. This basic picture represents an idealization of a much more complex dynamical problem. Although it ha...
متن کاملMagnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flag...
متن کاملSpirillum swimming: theory and observations of propulsion by the flagellar bundle.
The hydrodynamics and energetics of helical swimming by the bacterium Spirillum sp. is analysed using observations from medium speed cine photomicrography and theory. The photographic records show that the swimming organism's flagellar bundles beat in a helical fashion just as other bacterial flagella do. The data are analysed according to the rotational resistive theory of Chwang & Wu (1971) i...
متن کاملModeling and Testing of a Biomimetic Flagellar Propulsion Method for Microscale Biomedical Swimming Robots
Medical applications are among the most impactful areas of microrobotics. The ultimate goal of medical microrobots is to reach currently inaccessible areas of the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases at their very early stages. Miniature, safe and energy efficient propulsion sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Experimental Biology
سال: 2006
ISSN: 1477-9145,0022-0949
DOI: 10.1242/jeb.02120